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“The large energy consumption associated with the ever increasing 

internet use and the lack of efficient renewable energy sources to support it”

*Energy problems in data-com systems

*Energy problems in computers:

from systems to the chip level

*Advanced solar energy harvesting

Scent of Solutions?

This conference’s message



The Trend Our Customers Expect
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Outline

The trends 

The implications  

The opportunities

Heterogeneous systems – some thoughts

Memristor  Memory Intensive Architecture (MIA)

Energy: Optimal resource allocation in a 

Heterogeneous system

How to start to think about Memory Intensive 

Architecture
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The Trends
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Process Technology: Minimum Feature Size

Source: Intel, SIA Technology Roadmap
SIA: Semiconductor Industry Association

0.01

Feature Size

(microns)

0.1

1

10

’68 ’71 ’76 ’80 ’84 ’88 ’92 ’96 ’00 ’04 ’08

Intel
SIA

’14

130nm
90nm

65nm
45nm

32nm

180nm

22nm

7

14nm22nm



Putting It All Together !

!
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The Trend

Where are we going?

The power wall
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Microarchitecture

VLSI Microarchitecture has been influenced by 

concepts that have been around for a long time

We hit a power wall

Solutions

Top down – improve performance/power or 

Throughput/power  Heterogeneous Architecture

Bottom up – new devices ? Memory resistive devices?
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Hetero vs. Memory Intensive

Heterogeneous Architecture 

For a while no major breakthrough in CPU technology

But the main reason is the POWER wall and energy/task

Accelerators to the rescue

Memory Intensive Architecture 

Either a huge amount of memory cells close to logic, or

Logic cells close to lots of memory

Does it imply Symmetric processing?
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Flying machines - are they all the same?

Heterogeneous Systems
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Heterogeneous Computing:

Application Specific Accelerators
Performance/power

Apps range

Continue performance trend using Heterogeneous computing to 

bypass current technological hurdles

Accelerators
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Heterogeneous Computing

P
e

rf
o

rm
an

ce
s/

P
o

w
e

r

General Purpose

Accelerator

14



Heterogeneous Systems’ 

Environment

Environment with limited resources

Need to optimize system’s targets within 

resource constrains

Resources may be:
- Power, energy, area, space, $

System's targets may be:
- Performance, power, energy, area, space, $
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Heterogeneous Computing 

Heterogeneous system design under resource 

constraint
how to divide resources (e.g. area, power, energy) to achieve maximum 

system’s output (e.g. performance, throughput)

Accelerator target (an example): Minimize execution time under Area constraint

𝑎1
𝑎2

𝑎3

𝑎𝑛

𝑎4

𝑨 = 

𝒊=𝟏

𝒊=𝒏

𝒂𝒊

t2 t3 tnt1

time

ti = execution time of an application’s section (run on a reference computing system) 

Example:
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MultiAmdahl:

t1* F1(a1)+      t2* F2(a2)      + + tn* Fn(an)

a4

𝑎1

𝑎2

𝑎3

𝑎𝑛

t2 t3 tnt1

F1(a1) F2(a2) Fn(an)

T =

A =  a1 + a2 + a3 + … + an 

Target:  Minimize T under a constraint  A
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MultiAmdahl:

Optimization using Lagrange 

multipliers
Minimize execution time (T) 

under an Area (a) constraint

t2 t3 tnt1

F1(a1) F2(a2) Fn(an)
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tj F’j(aj) = ti F’i(ai)  

F’= derivation of the accelerator function

ai = Area of the i-th accelerator

ti =  Execution time on reference computer



MultiAmdahl Framework

Applying known techniques* to 

new environments

Can be used during system’s 

definition and/or dynamically to 

tune system 

* Gossen’s second law (1854), Marginal utility, Marginal rate of substitution (Finance)
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Example: CPU vs. Accelerators

Future GP CPU size vs. transistor budget growth

Test case: 
4 accelerators and GP (big) CPU

Applications: evenly distributed 
benchmarks mix w/ 10% sequential code 

Heterogeneous Insight: 

In an increased-transistor-budget-environment, 

General Purpose (big) CPU importance will grow 20



Example: CPU vs. Accelerators

GP CPU size vs. power budget

Test case: 
4 accelerators and GP (big) CPU

Applications: evenly distributed 
benchmarks mix w/ 10% sequential code 
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Heterogeneous Insight: 

In a decreased-power-budget-environment, 

Accelerators importance will grow



Environment Changes

Is it time for a change in implementation?

Throughput became an essential Microprocessor 

target

Data footprint became bigger

Multi-Core systems are everywhere 

 more performance = more memory usage

Memory pressure is increasing

Significant CPU die power (>30%) is consumed by IO 
(access to out-of-die memory)

22



Bottom up approach:

New device - Memristor?
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What is a Memristor?

2-terminal resistive nonvolatile device

Device’s resistivity depends on past 

electrical current 

Device is constructed of 2 metal layers with 

oxide in between (e.g. TiO2)

Can be implemented in Multi (physical) layer memory
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Jul 30, 2013

Panasonic Starts World's First Mass Production of ReRAM Mounted Microcomputers
[1] ReRAM (Resistive Random Access Memory)

A type of non-volatile memory which records "0" and "1" digital information by generating large resistance changes with a pulsed voltage applied to a thin-film metal oxide. 

The simple structure of the metal oxide sandwiched by electrodes makes the manufacturing process easier and provides excellent low power-consumption and high-speed rewriting characteristics.

//upload.wikimedia.org/wikipedia/commons/b/ba/Memristor-Symbol.svg
//upload.wikimedia.org/wikipedia/commons/b/ba/Memristor-Symbol.svg


• Theoretical idea by Chua 

in 1971

• Implemented today by 

Hewlett Packard

SK Hynix, HRL Labs

• Memory products by 

Pannasonic

Memristor

5
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n
mArray of 17 oxygen-depleted titanium dioxide

memristors (HP Labs)
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Memristor Microarchitecture “Vision” 

Layers of memory cells above logic

Does this new structure open the possibility 

for new Microarchitecture?
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Memristors to the Rescue?

Huge amount of memory cells

Very close to logic

Non volatile
No need for power to keep alive

~ transistor size

Fast

No leakage
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Sea of Memory Cells Impact 
- Conventional vs. Out of the box 

 Enhance Multithreading architecture (Graphics like)

 Increase on-die prediction structures

 Instruction queues

 Back to LUT (look-up-tables) implementations

 New caches (e.g. NAHALAL, MC vs. MT, Cache specific content) 

 Non-Register Architecture (memory-to-memory operations)

 Continues Flow Multithreading (improved SoE MT) 

 Instruction reuse (memoization)

 Computation at the memory level* 

* Ref Dr. Avidan Akerib General manager NeoMagic 28
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Memory Intensive

Architectures

Bandwidth demonsBandwidth demons

Traversing on a constant-throughput-line ?

?  increase on-die-memory (e.g. cache, new ideas)

The trend
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*Influenced by ISCA 1995 paper: Performance Evaluation of the PowerPC 620 Microarchitecture; (graph: frequency vs. performance/frequency)

Chip boundary
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to out-of Chip
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 energy waste
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Thread A

Thread B

Fetch

Execute

Write back

Cache miss!!!
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Switch on Event Multithreading
Example- processor pipeline 

Thread C
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Continuous Flow MT (CFMT)
Example – processor’s pipeline 

SOE deficiencies

Instructions flush beyond the “event instruction”

 waste of energy

 performance degradation

Can we use Memristor to reduce thread switch penalty 

(bubbles)?

 Yes 

do not flush, store the thread-pipe-state in 

memristors (Multistage Pipeline Register)
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Continues Flow MT (CFMT)
Example – processor’s pipeline 
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MPR

MPR

MPR

MPR

MPR

MPR

Continuous Flow MT (CFMT)
Example – processor’s pipeline Thread A

Thread B
Fetch

Execute

Write back

Cache miss!!!
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CFMT Initial Simulation (preliminary) (ARM like Microarch V7, lbm from Spec CPU 2006

CFMT for multiple cycle events? not sure yet…

SoE; no CFMT

CFMT (Mem and MCE)
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CFMT (mem only)

IPC
(Performance)

# of threads



Memory Intensive Architecture
Looking Forward

• Large on die memory may save energy and change 

the way we architect our computational machines

 Reduction in Data-Transfer

 Opportunity for dramatic improvement in 

Performance/Power or Throughput/Power

 Performance improvement (@same power) => energy 

reduction

 Reduction of static/leakage power

 Energy saving in reactive systems

(0 memory energy when no operation)

 NEW!!!
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Summary

Saving energy via optimal Heterogeneous 

system

The introduction of on-die huge memory 

should alter the way we design 

computational machines for low energy 

consumption
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Thank You
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