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This conference’s message

“The large energy consumption associated with the ever increasing
internet use and the lack of efficient renewable energy sources to support it”

*Energy problems in data-com systems

*Energy problems in computers: —
from systems to the chip level

*Advanced solar energy harvesting
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The Trend Our Customers Expect
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Outline

The trends
The implications

The opportunities
Heterogeneous systems — some thoughts
Memristor = Memory Intensive Architecture (MIA)

Energy: Optimal resource allocation in a
Heterogeneous system

How to start to think about Memory Intensive
Architecture




The Trends



Process Technology: Minimum Feature Size
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Putting It All Together

rénsistors
(Thousands)

- I R ------- Si ng le-Thread
: : Performance
(SpecINT)

Typfhical Powe

e - Number
f & AR o % e/ N of CDFE‘S




Where are we going?

The power wall



Microarchitecture

* VLSI Microarchitecture has been influenced by
concepts that have been around for along time

® We hit a power wall

.
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® Heterogeneous Architecture =
® For awhile no major breakthrough in CPU technology
® But the main reason is the POWER wall and energy/task
® Accelerators to the rescue

® Memory Intensive Architecture =
* Either a huge amount of memory cells close to logic, or

® Logic cells close to lots of memory
® Does it imply Symmetric processing?
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Heterogeneous Systems

Flying machines - are they all the same?
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Performance/power

a

Accelerators
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Continue performance trend using Heterogeneous computing to
bypass current technological hurdles

Apps'range
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Heterogeneous Computing

Accelerator

General_Purpose
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Heterogeneous Systems’
Environment

® Environment with limited resources

Need to optimize system’s targets within
resource constrains

Resources may be:
-Power, energy, area, space, $

System's targets may be:

- Performance, power, energy, area, space, $

»

»

»
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Heterogeneous Computing

/=

* Heterogeneous system design under resource

constraint

how to divide resources (e.g. , power, energy) to achieve maximum
system’s output (e.g. performance, throughput)
Example:
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Accelerator target (an example): Minimize execution time under Area constraint
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MultiIAmdabhl:

T=tuF(@a)t txFy(a) + + t.F.(@,)

A=a ta,taz;+...+a,

Target: Minimize T under a constraint A
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MultiAmdahl:

« —>< t,
* Optimization using Lagrange

multipliers

Minimize execution time (T)
under an Area (a) constraint
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MultiAmdahl Framework

* Applying known techniques* to
new environments

® Can be used during system’s

definition and/or dynamically to
tune system

* Gossen’s second law (1854), Marginal utility, Marginal rate of substitution (Finance)
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Example: CPU vs. Accelerators

Future GP CPU size vs. transistor budget growth

Test case:
4 accelerators and GP (big) CPU

Applications: evenly distributed
benchmarks mix w/ 10% sequential code
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Transistor Budget
Heterogeneous Insight:
In an increased-transistor-budget-environment,
General Purpose (big) CPU importance will grow

x100.0
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Example: CPU vs. Accelerators

GP CPU size vs. power budget

Test case:
4 accelerators and GP (big) CPU

Applications: evenly distributed
benchmarks mix w/ 10% sequential code
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Power Budget

Heterogeneous Insight:
In a decreased-power-budget-environment,
Accelerators importance will grow 21



Environment Changes
Is It time for a change in implementation?

* Throughput became an essential Microprocessor
target

Data footprint became bigger

Multi-Core systems are everywhere
=» more performance = more memory usage

= Memory pressure is increasing
Significant CPU die power (>30%) is consumed by IO

(access to out-of-die memory)
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Bottom up approach:
New device - Memristor?
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What 1s a Memristor?

2-terminal resistive nonvolatile device

. -

Current [mA]
Current (mA)

Device’s resistivity depends on past

electrical current

Device is constructed of 2 metal layers with
oxide in between (e.g. T,0,) Voltage [V]

Can be implemented in Multi (physical) layer memory

Jul 30, 2013
Panasonic Starts World's First Mass Production of ReRAM Mounted Microcomputers

[1] ReRAM (Resistive Random Access Memory, )
Atype of non-volatile memory which records "0" and "1" digital information by generating large resistance changes with a pulsed voltage applied to a thin-film metal oxide.
lectrodes makes the manufacturing process easier and provides excellent low p and high-speed rewriting
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Memristor

Memristor:
the missing element found

 Theoretical idea by Chua
In 1971
 Implemented today by

. Hewlett Packard

. SK Hynix, HRL Labs

-+ Memory products by

~ Pannasonic

Array of 17 oxygen-depleted titanium dioxide
memristors (HP_Labs)
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Memristor Microarchitecture “Vision”

* Layers of memory cells above logic

* Does this new structure open the possibility
for new Microarchitecture?
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Memristors to the Rescue?

* Huge amount of memory cells
* Very close to logic

* Non volatile
® No need for power to keep alive

* ~ transistor size
* Fast
* No leakage
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Sea of Memory Cells Impact
- Conventional vs.

= Enhance Multithreading architecture (Graphics like)
= |ncrease on-die prediction structures
= |nstruction queues

= Back to LUT (look-up-tables) Implementations

< Cc

* Ref Dr. Avidan Akerib General manager NeoMagic
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Throughput and Bandwidth*

Chip boundary
Memory Intensive Throughput K=
. engine Bandwidth
Architectures to out-of Chip

devices

Throughput/Bandwidth

Bandwidth demons

Bandwidth
® Traversing on a constant-throughput-line =?

* ? =»increase on-die-memory (e.g. cache, new ideas)

*Influenced by ISCA 1995 paper: Performance Evaluation of the PowerPC 620 Microarchitecture; (graph: frequency vs. performance/frequency) 29



Switch on Event Multithreading

Example- processor pipeline

Thread A O
Thread B ‘
Thread C ‘
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Continuous Flow MT (CFMT)

Example — processor’s pipeline

SOE deficiencies

Instructions flush beyond the “event instruction”
=» waste of energy
= performance degradation

Can we use Memristor to reduce thread switch penalty
(bubbles)?

=2 Yes

do not flush, store the thread-pipe-state in
memristors (Multistage Pipeline Register)
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Pipeline stages

Continues Flow MT (CFMT)

Example — processor’s pipeline

Thread A Pipeline register

Pipeline
Register (MPR)
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Continuous Flow MT (CFMT)

Example — processor’s pipeline Thread A

Thread B
o

@ Thread C
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C F MT I n I tl a.I SI m u I at I O n (preliminary) (ARM like Microarch V7, Ibm from Spec CPU 2C

IPC Ibm performance
(Performance) 97

CFMT (Mem and MCE)

.”22900000000000000000 SoE: no CFMT

25 30 35

# of threads

CFMT for multiple cycle events? not sure yet...
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Memory Intensive Architecture

Looking Forward

« Large on die memory may save energy and change
the way we architect our computational machines

>
>

>

YV VYV

Reduction in Data-Transfer

Opportunity for dramatic improvement in
Performance/Power or Throughput/Power

Performance improvement (@same power) => energy
reduction

Reduction of static/leakage power

Energy saving in reactive systems
(0 memory energy when no operation)

IN[SAVVARS
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Summary

® Saving energy via optimal Heterogeneous
system

®* The introduction of on-die huge memory
should alter the way we design
computational machines for low energy
consumption
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Thank You



